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Abstract 

We describe an algorithm for the static load balancing of scientific computations that 
generalizes and improves upon spectral bisection. Through a novel use of multiple 
eigenvectors, our new spectral algorithm can divide a computation into 4 or 8 pieces 
at once. These multidimensional spectral partitioning algorithms generate balanced 
partitions that have lower communication overhead and are less expensive to compute 
than those produced by spectral bisection. In addition, they automatically work to 
minimize message contention on a hypercube or mesh architecture. These spectral 
partitions are further improved by a multidimensional generalization of the Kernighan- 
Lingraph partitioning algorithm. Results on several computational grids are given and 

compared with other popular methods. 

This work was supported by the Applied Mathematical Sciences program, U.S. Department of 

Energy, Office of Energy Research, and was performed at Sandia National Laboratories, operated for 
the U.S. Department of Energy under contract No. DE-AC04-76DP00789. 
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1. Introduction. Efficient use of a distributed memory parallel computer requires 
that the computational load be balanced across processors in a way that minimizes 
interprocessor communication. This mapping requirement can be abstracted to a graph 
problem in which nodes represent computation, edges represent communication, and 
the objective is to assign an equal number of vertices to each processor in a way that 
minimizes the number of edges crossing between processors. Practical experience has 
shown that the quality of this mapping can have a substantial impact on performance, 
hence there is considerable interest in effective mapping algorithms. 

A new heuristic for graph partitioning in the context of mapping parallel computa- 
tions was recently proposed by Simon [16]. This spectral method recursively bisects a 
graph by considering an eigenvector of an associated matrix to gain an understanding 
of global properties of the graph. The method has received much attention because 
it offers a good balance between generality, quality and efficiency. The idea of using 
eigenvectors to partition graphs originated with work in the early 70’s by Donath and 
Hoffman [3, 4], and Fiedler [6, 7]. In recent years these ideas have been revived and 
further developed by several authors [2, 13, 14, 15]. 

With one exception, all this previous work has been based upon the application of 
recursive bisection, a strategy which is limiting in several important ways. Rendl and 
Wolkowicz do describe an algorithm for partitioning a graph into an arbitrary number 
of sets without recursion [15]. However, their algorithm requires that k eigenvectors 
of a matrix representing the graph be determined in order to partition the graph into 
k sets. This renders the algorithm impractical for dividing large graphs into hundreds 
or thousands of sets, precisely what is required in mapping grand challenge problems 
onto massively parallel machines. The distinguishing feature of the work described in 
this paper is that it offers a practical generalization of spectral bisection to allow the 
division into more than two sets at once. This is especially appropriate in the context 
of modern parallel supercomputing. 

Specifically, we describe two new algorithms, spectral qwzdrisection and spectral 
octasection, which partition into four sets using two eigenvectors and eight sets using 
three eigenvectors respectively. By weighing the effect of several cuts simultaneously, 
these new algorithms produce better partitions than spectral bisection, as measured 
in the hypercube hop (or Manhattan) metric. Empirical study has shown that this 
is the appropriate measure for modeling the performance of hypercube architecture 
machines since minimizing this metric corresponds to minimizing congestion within the 
communication network [9]. The hop metric is similarly appropriate for two and three 
dimensional mesh architectures (with or without wrap-around torus connections). Most 
distributed memory parallel machines have either mesh or hypercube architectures, so 
these new algorithms have wide application. 

In addition to producing better partitions, these higher dimensional spectral algo- 
rithms have two other significant advantages. First, the logarithmic relationship be- 
tween the number of required eigenvectors and the number of partitions means that in 
practice the new methods actually require less net computation than spectral bisection 
to define the same number of partitions. Second, by exploiting available redundancy 
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in the solution space, higher dimensional spectral methods are able to correctly par- 
tition highly symmetric graphs which give spectral bisection trouble. Load balancing 
algorithms based on spectral quadrisection and octasection are thus generally more 
powerful, efficient and robust than those based on spectral bisection. 

Many of the results presented here are taken from a recently completed report [1 1]. 
The purpose of this paper is to present those results in a less formal and more intuitive 
manner. In addition, the content of $6 and 57 has not appeared previously. In $2 
of this paper, we describe spectral bisection and lay the mathematical and notational 
framework for the later sections. In ~3 through ~5 we describe our spectral quadrisec- 
tion and octasection algorithms. A physical object whose behavior mimics that of the 
partitioning algorithms is described in 36, and a new algorithm to locally refine the 
spectral partition is presented in ~7. Results of some sample calculations are presented 
in 58, followed by conclusions in $9. 

2. Spectral bisection. Various formulations of spectral bisection can be found 

in papers by several authors [2, 13, 16]. We choose to set up the problem as follows. 
Define the graph G by vertex set V and edge set l?. Index the n vertices with i or j, 
so K refers to the vertex with index i, Ei,j denotes an extant edge between Vi and Vj, 
and xv, and ~EiJ specify sums over the vertices and existing edges, respectively. Now 
assign a variable xi to each Vi such that ~i = +1 and xvi ~i = O. The first condition 
stipulates a partition into two distinct sets. The second requires that the sets be of 
equal size, assuming an even number of vertices. (We call a vector x whose elements 
satisfy these conditions an indicator vector since it indicates the set assignment of each 

graph vertex.) 

The next step is to notice that the function ~(z) = ~ ~&, (~; – ~j)2 counts the 
number of edges crossing between sets since (xi — ~j)2 contributes nothing to the sum 
if xi and xj have the same sign, and contributes 4 if they have opposite sign. Now that 
we have an objective function to minimize, we convert ~(z) to matrix form since that 
will make the solution more apparent. We start by defining the adjacency matrix 

(1) Ai,j = 
{ 

1 if (~,~)cE 
O otherwise. 

We also define the degree matrix D = diag(di), where di is the graph degree of ~, i.e. 
the number of edges incident upon vertex Vi. 

The conversion then proceeds as follows. Write 

and recast the terms 

(3) ~zxixj = y’xiAijxj = ~xi~Aijxj = XTAX. 
Etj v, v, Vi Vj 
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Now define the Laplacian matrix of the graph G

{

–1 if (w,~) ● E

(5) Li,j = di ifi=j

O otherwise,

note that L(G) = D — A, and conclude j(z) = ~x~Lz. Coupling this with the con-

straints on z, we define the discrete bisection problem

(6)
1

Minimize ~z~Lz

Subject to : ZT1 = O, Zi = +1,

where 1 is the n-vector (1, 1, 1,.. .)~. Since graph partitioning is an NP-hard problem,

we expect that there is no practical way to solve this problem. Undeterred, we relax

the discreteness constraint on x and define the continuous bisection problem

(7) Minimize
1
-zTLz
4

Subject to : ZT1 = O, x=x = n,

in which the elements of z may take on any values satisfying the norm constraint. This
continuous problem is only an approximation to the discrete problem, and the values

defining its solution must be mapped back to +1 by some appropriate scheme to define

a partition. Let us emphasize that the relaxation of the discreteness constraint is the

crucial approximation in application of spectral methods to graph partitioning. Ideally,
the solution to the continuous problem will have entries clustered near +1 so that it is
a good approximation to the discrete problem.

We now begin the solution of (7) by

eral important properties. If U1,U2 . . . Un
corresponding eigenvalues Al < A2 < . . . <

THEOREM 2.1. The matriz L has the

(I) L is symmetric positive semi-definite.

(II) The ui are pairwise orthogonal.

(’111) U1 = n-+l, Al = O.

noting that the Laplacian matrix has sev-

are the normalized eigenvectors of L with

An, the following theorem is proved in [11].

following properties.

(IV) If G is connected, then Al is the only zero eigenvalue of L.

Next express z in terms of the eigenvectors of L: z = ~i ~iui where the ~i are real

constants such that ~~=1 @ = n. Property II ensures that this is always possible since

a set of n pairwise orthogonal vectors must span Illn. By substitution for z we find

given the ordering of the eigenvalues, so j(z) > n~z/4. Notice that we can achieve

f(x) = nA2/4 by choosing x = &u2. Notice also that this choice of x satisfies the

balance constraint since x~l = u~ul = O, by properties II and III. Therefore, since
4



x = fiu2 satisfies the constraints and minimizes ~(z), it is a solution to the continuous

problem. If Az # &, this solution is unique (z = – fiuz defines the same partition).

There remains the task of mapping the solution of the continuous problem to a

discrete partition. In the case of bisection there is a simple and natural way to do
this. Find the median of the xi values and then map vertices with corresponding xi

above the median to one set, and those below to the other. If several vertices share
the median value they are assigned in a way that retains balance. This solution is the

nearest discrete point to the continuous optimum.

An immediate corollary of the reasoning used to solve the continuous minimization

problem is that nAz/4 is a lower bound on the number of cuts produced by any balanced

partitioning of the graph. That is because the solution space of the continuous prob-

lem subsumes the solution space of the discrete problem. This result can be slightly

improved using insight from the higher dimensional partitioning schemes, as we show
in [11]. Unfortunately, while these lower bounds are simple and computable, they tend

to be rather loose in practice.

A theoretical result of more practical interest involves a theorem due to Fiedler

[6, 7]. This says that following a bisection, if the median value is larger than zero,
then the subgraph consisting of all lower valued vertices is connected. Similarly, if the

median value is less than zero, then the subgraph consisting of all higher valued vertices
is connected. In both cases the other subgraph may be disconnected. A disconnected

subgraph is problematic because we intend to apply the method recursively, and the

met hod can fail badly if applied to a disconnected graph since Theorem 2.1( IV) breaks

down. We therefore monitor connectivity of the subgraphs at each stage of recursion. If
a disjoint subgraph is detected, we add a minimal number of phantom edges to establish

connectivity, partition this subgraph and then remove the phantom edges. We find that

in practice several subgraphs do become disconnected in the course of the partitioning

of a typical large graph, and our phantom-edge strategy does noticeably improve overall

results in those cases.

3. Spectral quadrisection. In order to partition a graph into four sets we need

a second indicator vector, y, so that we can associate two bistate coordinates with each
vertex. To make set assignment explicit, we define a mapping from the indicator vector

to binary digits ii = ~(~i – 1), ii = ~(gi – 1) and then assign vi to set O, 1, 2 or 3
by interpreting tiji as a binary number. The question is then how we should choose z
and y in order to achieve a good mapping,

Consider the objective function f(z, y) = ~(z~Lz + yTLy). This counts hypercube
hops, as illustrated in Fig. 1. To understand this, notice that EI,2, which crosses the

x = O plane, contributes 1 to the value of j(z, y) through the ZTLZ term. Similarly,

EZ,3 crosses the y = O plane and contributes 1 to j(z, y) through the yTLy term. An

edge like El,s, however, crosses both planes and hence contributes 2 to the value of

f(z, y).

We also need to revise the minimization constraints. In the continuous bisection
problem we had the single constraint ZT1 = O to ensure load balance in the z indicator
vector. In the quadrisection case we clearly need to add y~l = O to ensure balance in

5



ij=ol y

t

&’j = 1:

+

1

x

3

Fig. 1. The function j(z, y) = ~(z~Ax + yTAy) counts hops in the plane.

the y indicator vector, A less obvious but necessary constraint proved in [11] is that

XV, ~iyi = x~y = O. This constraint serves to prevent a node distribution like that

shown in Fig. 2, which is balanced with respect to both the z = O and y = O planes

independently, but does not represent four balanced sets; a correct partitioning would

assign two nodes to each quadrant.

Note that by way of physical analogy with a point-mass distribution, the ZT1 = O

and y~l = O constraints specify a coordinate system in which the origin is placed at

the center of mass. We can extend the analogy by considering the inertia tensor

(9) T=
(

XV, Y: – ~v, X~yi

– ~Vi Xiyi )~vi x: “

The x~y = O constraint combined with norm constraints XTX = yTy = n stipulate
a distribution in which 2’ is a constant multiple of the identity matrix, i.e. there is

no preferred axis of rotation. Intuitively, these conditions describe a roughly spherical

mass distribution which is divided naturally into four balanced sets by the orthogonal

axes. We might infer that for higher dimensional partitionings we must specify that

higher moments are zero in order to preserve balance. This is in fact the case, as we

prove algebraically in [11].

set 1 ~Y set 3

+

.

.
.“

.e x
.

.

set O set 2

Fig. 2. An unbalanced but allowed quadrisection unless the constraint
xTy = O is enforced.

With these amendments, we can now follow the same progression from discrete to
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continuous model used in the bisection case and write continuous quadrisection

(lo) Minimize ;(Z% + yTL?J)

Subject to : ZT1 = ?JTl= Fy = o, XTX = yTy = n.

The solution of (10) is actually very simple, We first note that if z and y are
chosen to be any pair of distinct eigenvectors of L not including UI and scaled by W,

the constraint equations are all satisfied. That is because, by Theorem 2.1, all such

eigenvectors are orthogonal and are also orthogonal to @ul = 1. By extension of the
algebraic argument used in (8) for the bisection case, we can prove that the minimum

possible value of ~(z, y) = n(A2 + A3)/4 is obtained by setting x = @u2 and y = @us,

and that n(A2 + A3)/4 is a lower bound on the number of hops induced by any balanced

partition into four sets. This is a special case of the general solution theorem proved in

[11].

Notice that if we set x = fiuz cos O+&uB sin Oand y = –/iiu2 sin 0+ &u3 cos 0,

then z and y still satisfy the constraint equations and also produce the same minimum

value of ~(x, y). Hence there is actually a family of solutions to (10) corresponding

to the various choices of the free parameter 8. Different values of O correspond to
different solutions to the continuous problem that have the same value but specify

different partitionings. An obvious question is therefore how we might exploit this

rotational degree of freedom to advantage. We do so by choosing $ in a way that
partially recovers the accuracy lost when we relaxed the discrete optimization model to
the continuous one. That is, we attempt to minimize the discrepancy between the two

models by making the continuous optimum as nearly discrete as possible. Specifically,
we minimize g(tl) = ~v, (l – X:)2 + (1 – y~)2 over O E (O,27r). After substituting the

trigonometric expansions for x and y, this reduces to minimizing a constant coefficient

quartic equation in sines and cosines of O. The construction of the coefficients in this

equation requires O(n) work, but the cost of the resulting minimization problem is

independent of n and is not significant when partitioning large graphs. This is actually

a global optimization, but in our experience the number of values of O corresponding to

local minima is small, so a good solution can be found in most cases by a short sequence

of local minimizations from random starting points.

As in spectral bisection, there remains the problem of mapping the continuous,

rotated solution back to discrete space. Unfortunately a simple generalization of the
median technique used there is no longer adequate. Our guiding principle is once again

to find the discrete solution nearest the continuous optimum. First we define a distance

function from a continuous point (xi, yi) to a discrete point (+1, +1). We wish to
assign one fourth of the continuous points to each of the discrete points in such a way

that the sum of the distances from the continuous values to their discrete assignments

is minimized. This is an instance of a minimum cost assignment problem, for which

efficient algorithms are known. In our code, we implemented an algorithm from [18]
that runs in O(n log(n)) time.



4. Spectral octasection. The development of the octasection algorithm follows

closely that of quadrisection. We define a third indicator vector z mapped to a bit by

.2i = ~(~i — 1) and assign each vi to one of eight sets by interpreting ~iji~i as a binary
number. We then minimize the function $(z, y, z) = ~(zTLz + YTLY + ZT-LZ) which

counts hypercube hops on a three dimensional cube. To retain balance we must do this

subject to the additional constraint that a particular third moment of the distribution is

zero, i.e. ~v, ~iYizi = O. (The physical analogy with mass distribution does not extend

easily, although it is still true that the inertial tensor is a multiple of the identity. )

Relaxing the discreteness constraint as before, we arrive at the continuous octasection

problem

(11) @Z+ yTLy + ZTLZ)Minimize ~

Subject to : XT1 = ?JTl= ZT1 = XT’lJ= XTZ = yTZ = ~X~y:Z: = o>
v,

XTX = yTy = ZTZ = n.

Ignoring temporarily the third moment constraint, one solution to the problem is x =

fiu~, Y = fius and z = fiu~ with corresponding minimum (and hence lower bound
on the number of hops induced by any balanced partition into eight sets) of n(~z +

& + Aq)/4. Again there is redundancy in the solution space since any rotation of these

eigenvectors generates another solution of equal value. Since we are working in 3D space,

there are three rotational degrees of freedom. We use this freedom to now satisfy the

triple product constraint while, as in quadrisection, also trying to make the continuous

optimum as nearly discrete as possible. This yields a constrained optimization problem

in three variables involving a constant coefficient quartic polynomial in sines and cosines
of the angular parameters. The coefficients are computed in O(n) time, after which the

cost of the minimization is independent of n. The continuous, rotated solution is then

mapped back to a discrete solution using the same algorithm for the minimum cost

assignment problem employed in spectral quadrisection.

5. Higher dimensional spectral partitioning. If a d–dimensional partitioning

scheme divides a mesh into 2d parts at once, we have presented spectral schemes for 1 <

d <3. Although some of the implementation details become more difficult, these ideas

extend naturally to the d = 4 case. When d > 4 the moment constraints outnumber

the rotational degrees of freedom, so it will not generally be possible to construct a

balanced partition from the d + 1 lowest eigenvectors of L [11].

6. A physical model of spectral partitioning. Our intuition has been en-

hanced by the observation that there is a simple physical object whose behavior mimics

spectral partitioning. Imagine a horizontal table into which n rigid rods have been em-

bedded. The rods all extend perpendicularly from the table. Now place a bead on each
rod that can slide vertically without friction. The beads, each with mass m, correspond
to vertices in the graph to be partitioned. If there is an edge between vertices Vi and

Vj, connect beads i and j with an ideal spring whose rest length is zero.

8



We will ignore gravity and let all spring constants have an equal value k. We
will denote the position of bead i above the plane by z(i), the horizontal separation

between rods i and j by H1~, and the extension of spring between beads i andj by

~ij = {H~+(Z(z) –z(~))2}Z. Inthiscase, F(i), the force on bead iinthez direction
is simply the combination of the forces of all the incident springs, so

(12) F(i) = ~ k~j
Z(j) – ‘(i) = k ~ z(~) – z(i).

jadji &j 3@i

In matrix terms this can be expressed F = –kLz, where L is the Laplacian matrix of the
graph introduced earlier. Using Newton’s second law we obtain a differential equation

describing the oscillatory modes of the structure, 2 = – &Lz. The solution for mode 1

is z(t) m U1cos(~(t —to)), where (Al, u1) is an eigenpair of L. This modal solution
consists of two factors: the cosine term represents a time oscillation, while the spatial
distribution is described by the u, factor. This spatial distribution is precisely the same

as that used in spectral bisection. Hence spectral bisection partitions a graph based on

the spatial envelope of the vibrational modes of the corresponding spring structure.

Note that lowest eigenvector of the Laplacian matrix is n-*1, which is a spatially

flat mode. The lowest frequency oscillatory mode of this spring and bead structure

therefore corresponds to the second lowest eigenvector of the Laplacian matrix. Spectral

bisection simply divides the graph based upon this mode; the values above the median

displacement get mapped to one set, and those below get placed in the other. Intuitively,

the mode defines a long direction in the graph, and the algorithm divides the graph by
cutting orthogonally to this direction.

It is important to note that, subject to the assumptions outlined above, this anal-

ysis is completely independent of the actual locations of the rods. The modes are a

topological property of the graph, not a geometrical property of the physical object.

Spectral quadrisection and octasection are somewhat more difficult to interpret.
Quadrisection uses the second lowest mode in addition to the lowest to divide the

graph into 4 pieces, while octasection employs the three lowest modes to divide into 8

pieces. These algorithms form linear combinations of the low modes in a way that is
difficult to describe physically.

7. Locally refining the partition. As the results in 38 will show, the spectral

partitioning algorithms described above typically produce better partitions than com-
petitive algorithms. This success is due to their ability to find promising regions of the

graph in which to cut. However, this global strength is combined with a local weakness.

Spectral methods often do poorly in the fine details of a partition. This observation
suggests that spectral methods could be improved by coupling them with a heuristic to

improve the partition locally.

One such heuristic is the graph bisection algorithm due to Kernighan and Lin (KL)

[12]. This algorithm is quite good at finding locally optimal answers, but unless it is
initialized with a good global partition, the local optimum can be far from the best
possible. The synergy between the global strength of spectral methods and the local

finesse of KL leads to an algorithm that is significantly better than either alone.
9



The KL algorithm has an outer loop that continues as long as improved partitions

are being discovered. Each outer loop begins by computing a preference value q for

each vertex. The preference value is the reduction in the number of edges between the
two sets if the vertex were to switch sets. That is,

(13)
{

1 if P(u) # P(W)
q(u) = ~

(v,,v, )eE – 1 otherwise,

where P(Vi) is the current partition for vertex Vi. The algorithm then enters a loop

in which it swaps two vertices between partitions, and updates the preference values

of their neighbors. It always swaps the vertices with the largest preferences, and once

a vertex is moved, it is not reconsidered. After each swap, the resulting partition is

evaluated and the best one encountered is recorded and becomes the new partition upon

exiting the inner loop. Note that since vertices are just swapped, if the initial partition

is balanced then all generated part it ions will be balanced as well. Each of these outer

loops can be implemented to run in time proportional to the number of edges in the

graph [5]. In practice, the number of passes required is quite small, usually fewer than

5, so the algorithm is effectively linear time. It also requires space proportional to the
number of vertices in the graph. The algorithm is sketched in more detail in Fig. 3.

Until no better partition is discovered

Best Partition := Current Partition

& := Vertices in Partition 1

& := Vertices in Partition 2
For All ~

Compute preference value q(i)
While S1 # 0 and & # 0

U := vertex in SI with largest preference

P(u) := 2

s~:=s~\u

Update preferences of neighbors of W
Vj := vertex in S2 with largest preference

P(y) := 1

s2:=s2\T’5
Update preferences of neighbors of Vj
If Current Partition better than Best Partition Then

Best Partition := Current Partition

Current Partition := Best Partition

Fig. 3. The Kernighan-Lin bipartition refinement algorithm.

Our spectral quadrisection and octasection
or eight piece:, at once, so a local refinement of

be able to handle more than just two sets. A

described by Suaris and Kedem for circuit layout
10

algorithms divide a graph into four
these partitioning algorithms should

generalization of KL to four sets is

problems [17], and we have extended



this idea to an arbitrary number of sets. In addition, we are interested in minimizing

the total number of hops spanned by graph edges spanning different processors, so we
want a refinement algorithm that can handle arbitrary cost metrics for edges connecting

different partitions.

We have developed an algorithm that generalizes Kernighan-Lin (GKL) to address

these issues. Our algorithm differs from the original KL in several ways. First, instead

of a single value, preferences need to be computed for a vertex transfer to any of the

other sets, values we denote by q~(i). Second, the preference values include a factor

for the inter-set metric, which for our purposes is chosen to be the hop metric. Third,

moves are made singly instead of in pairs, since we might now want to move vertices in

something other than a strict swap fashion. Fourth, unlike the original KL algorithm,
partitions can be generated that are not balanced, so move selection tries to encourage

the generation of balanced sets. This is accomplished by considering only moves from

sets of at least average size to those that are at or below average size. And fifth, since
intermediate partitions can be unbalanced, partitions are only considered for recording

if they satisfy a balance criteria. The GKL algorithm is sketched below in Fig. 4. For q

sets, this algorithm can be implemented to run in 0(q2 Il?[) time and requires O(q IV[)

space.

Until no better partition is discovered

Best Partition := Current Partition

For All k c {1 ,.. ., q}, Sk := Vertices in Partition k
For All V

Compute q – 1 preferences q~(i)

While allowed moves exist

~ := vertex with largest allowed preference

1 := set vertex ~ wants to go to

&qv,) := &(vJ \~

P(w) := 1

Update preferences of neighbors of U
If Current Partition balanced and better than Best Partition Then

Best Partition := Current Partition

Current Partition := Best Partition

(RS$

section

Fig. 4. The generalized Kernighan-Lin multipartition refinement algo-
rithm for improving a partition into q sets.

Results. We have empirically compared our recursive spectral quadrisection

and recursive spectral octasection (RSO) algorithms to recursive spectral bi-

(RSB) and another bisection algorithm in common use, the inertiat method

proposed by Nour-Omid

tive application meshes.
reported in [10].

[16]. We report here results for partitioning three representa-

These results are typical of the more comprehensive testing
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The first example grid is a 2D finite element meshing of a multi-element airfoil

provided by Barth and Jesperson of NASA Ames which has been commonly used in

testing partitioners [1]; we have actually constructed and partitioned the dual (IV I =

8034, IE[ = 11813) of this mesh since that is more appropriate for some finite element
calculations. The second is another 2D CFD mesh generated by Hammond at RIACS

[8] ( IV[ = 4720, [El = 13722). The third is a three-dimensional finite difference mesh of
a complex manufacturing component generated at Sandia (IV [ = 6661, Il?l = 55600).

Table 1 shows the results obtained when four partitioning methods were used to divide

each sample mesh into eight pieces. The methods are listed in rank order by hop count,
which, as we mentioned earlier, has been shown to closely correlate with the overhead

due to communication for these sorts of applications [9]. We have also shown another
common measure of partition quality, the number of cuts, i.e. the total number of edges

crossing between processor sets. Division into more than eight sets can be accomplished
by recursive application of any of these methods.

Table 1. Performance of partitioning algorithms on sample meshes.
Barth Mesh Hammond Mesh Sandia Mesh

Method cuts hops cuts hops cuts hops

Inertial 317 396 880 1349 4652 5594

RSB 212 286 469 772 3425 5084

RSO 221 224 439 453 4138 4735

RSOKL 197 200 422 425 3140 3420

The suffix KL in RSOKL refers to appending the generalized Kernighan-Lin algo-

rithm described in \7 to the spectral output. The resulting partition is clearly the best
with respect to both hops and cuts. Notice also that the cut and hop totals are nearly

equal for this algorithm, indicating that most communication is between neighboring

processors. Partitioning results are discussed in more detail in [10, 11].

9. Conclusions. We have described a static load balancing algorithm that is well

suited to partitioning unstructured grids for problems in scientific computation. Our

algorithm generalizes spectral bisection to allow for the division into four or eight sets

at once. This multidimensional approach is faster than spectral bisection, and explicitly
accounts for message congestion in mesh, torus or hypercube architectures. Several au-

thors have found spectral bisection to produce better mappings of unstructured meshes
than other techniques [16, 19], and in sample problems our new algorithm significantly

outperforms spectral bisection.
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